Description Usage Arguments Details Value Note Author(s) References Examples
Compute confidence intervals and conduct hypothesis testing on difference between two population means, population variances, and population proportions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | #CI for the difference in two pupulation means of a normal distribution
#when the population variances are known:
# if sample available
twosample.Zinterval(level,sigma1,sigma2,sample1,sample2)
# if stats are provided
twosample.Zinterval(level,sigma1,sigma2,barx1,barx2,n1,n2)
#Test on the difference in two pupulation means of a normal distribution
#when the population variances are known:
# if sample available
twosample.Ztest(Delta0,H1,alpha,sigma1,sigma2,sample1,sample2)
# if stats are provided
twosample.Ztest(Delta0,H1,alpha,sigma1,sigma2,barx1,barx2,n1,n2)
#CI for the difference in two pupulation means of a normal distribution
#when the population variances are unknown (pooled=yes or no)
# if sample available
twosample.Tinterval(level, pooled,sample1,sample2)
# if stats are provided
twosample.Tinterval(level, pooled,barx1,barx2,n1,n2,s1,s2)
#Test on the difference in two pupulation means of a normal distribution
#when the population variances are unknown:
# if sample available
twosample.Ttest(Delta0,H1,alpha,pooled=yes,sample1,sample2)
# if stats are provided
twosample.Ttest(Delta0,H1,alpha,pooled=yes,barx1,barx2,n1,n2,s1,s2)
#CI for the ratio between two pupulation variances of a normal distribution
# if sample available
Finterval(level, sample1,sample2)
# if stats are provided
Finterval(level, n1,n2,s1,s2)
#Test on the ratio between two pupulation variances of a normal distribution
# if sample available
Ftest(H1,alpha,sample1,sample2)
# if stats are provided
Ftest(H1,alpha,n1,n2,s1,s2)
|
level |
the confidence level |
sample1 |
a vector of the observed sample from the first population |
sample2 |
a vector of the observed sample from the second population |
sigma1 |
the known population standard deviation of the first population |
sigma2 |
the known population standard deviation of the second population |
s1,s2 |
the sample standard deviations |
barx1,barx2 |
the sample means |
n1,n2 |
the sample sizes |
X1,X2 |
number of observations belongs to a class of interest |
Delta0 |
the hypothesized value of mu1-mu2 |
H1 |
type of alternative: "two","left", or "right" |
alpha |
the significance level |
pooled |
"yes" or "no" |
Compute confidence intervals and conduct hypothesis testing on difference between two population means, population variances, and population proportions.
interval |
As long as the function has "interval", the outcome contains a two-sided CI and the two one-sided confidence bounds. |
test |
As long as the function has "test", it produces the test results of using three approaches. |
deweiwang@stat.sc.edu
Dewei Wang
Chapter 10 of the textbook "Applied Statistics and Probability for Engineers" 7th edition
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | #two-sample Zinterval
#must include the = sign
twosample.Zinterval(level=0.9,sigma1=1,sigma2=1.5,barx1=87.6,barx2=74.5,n1=10,n2=12)
#two-sample Ztest
twosample.Ztest(Delta0=0,H1="right",alpha=0.05, sigma1=8,sigma2=8,
barx1=121,barx2=112,n1=10,n2=10)
#two-sample Tinterval
#must include the = sign
twosample.Tinterval(level=0.95,pooled="no",s1=5,s2=4,barx1=90,barx2=87,n1=10,n2=15)
#two-sample Ttest
catalyst1=c(91.50,94.18,92.18,95.39,91.79,89.07,94.72,89.21)
catalyst2=c(89.19,90.95,90.46,93.21,97.19,97.04,91.07,92.75)
data.summary(catalyst1)
data.summary(catalyst2)
twosample.Tinterval(level=0.95,pooled="yes",
sample1=catalyst1,sample2=catalyst2)
twosample.Ttest(Delta0=0,H1="two",alpha=0.05, pooled="yes",
sample1=catalyst1,sample2=catalyst2)
C50=c(0.047, 0.060, 0.061, 0.064, 0.080, 0.090, 0.118, 0.165, 0.183)
C60=c(0.062, 0.105, 0.118, 0.137, 0.153, 0.197, 0.210, 0.250, 0.335)
data.summary(C50)
data.summary(C60)
twosample.Tinterval(level=0.95,pooled="no",
sample1=C50,sample2=C60)
twosample.Ttest(Delta0=0,H1="left",alpha=0.05, pooled="no",
sample1=C50,sample2=C60)
#Paired T-test
Karlsrube=c(1.186,1.151,1.322,1.229,1.200,1.402,1.365,1.537,1.559)
Lehigh=c(1.061,0.992,1.063,1.062,1.065,1.178,1.037,1.086,1.052)
data.summary(Karlsrube-Lehigh)
Tinterval(level=0.95,sample=Karlsrube-Lehigh)
Ttest(mu0=0, H1="two",alpha=0.05,sample=Karlsrube-Lehigh)
#F-interval
Finterval(level=0.9,n1=11,n2=16,s1=5.1,s2=4.7)
Ftest(H1="two",alpha=0.1,n1=11,n2=16,s1=5.1,s2=4.7)
#two-sample proportion Z-interval
twosample.Propinterval(level=0.95, n1=85,n2=85,X1=10,X2=8)
twosample.Propinterval(level=0.95, n1=100,n2=100,X1=27,X2=19)
twosample.Proptest(H1="right",alpha=0.05,n1=100,n2=100,X1=27,X2=19)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.